Premium
A bayesian estimator for the dependence function of a bivariate extreme‐value distribution
Author(s) -
Guillotte Simon,
Perron François
Publication year - 2008
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550360304
Subject(s) - estimator , mathematics , markov chain monte carlo , bivariate analysis , copula (linguistics) , bayesian probability , nonparametric statistics , statistics , bayes estimator , econometrics
Any continuous bivariate distribution can be expressed in terms of its margins and a unique copula. In the case of extreme‐value distributions, the copula is characterized by a dependence function while each margin depends on three parameters. The authors propose a Bayesian approach for the simultaneous estimation of the dependence function and the parameters defining the margins. They describe a nonparametric model for the dependence function and a reversible jump Markov chain Monte Carlo algorithm for the computation of the Bayesian estimator. They show through simulations that their estimator has a smaller mean integrated squared error than classical nonparametric estimators, especially in small samples. They illustrate their approach on a hydrological data set.