Premium
Objective Bayesian analysis of spatial data with measurement error
Author(s) -
De Oliveira Victor
Publication year - 2007
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550350206
Subject(s) - prior probability , frequentist inference , bayesian probability , computer science , data set , variance (accounting) , field (mathematics) , statistics , gaussian , econometrics , mathematics , algorithm , bayesian inference , physics , accounting , quantum mechanics , pure mathematics , business
The author shows how geostatistical data that contain measurement errors can be analyzed objectively by a Bayesian approach using Gaussian random fields. He proposes a reference prior and two versions of Jeffreys' prior for the model parameters. He studies the propriety and the existence of moments for the resulting posteriors. He also establishes the existence of the mean and variance of the predictive distributions based on these default priors. His reference prior derives from a representation of the integrated likelihood that is particularly convenient for computation and analysis. He further shows that these default priors are not very sensitive to some aspects of the design and model, and that they have good frequentist properties. Finally, he uses a data set of carbon/nitrogen ratios from an agricultural field to illustrate his approach.