Premium
A unified approach to estimation of nonlinear mixed effects and Berkson measurement error models
Author(s) -
Wang Liqun
Publication year - 2007
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550350203
Subject(s) - estimator , covariate , errors in variables models , mathematics , nonparametric statistics , monte carlo method , statistics , parametric statistics , observational error , random variable , random effects model , econometrics , computer science , medicine , meta analysis
Abstract Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second‐order least squares estimator and a simulation‐based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model.