z-logo
Premium
Consistent testing for non‐correlation of two cointegrated ARMA time series
Author(s) -
Saidi Abdessamad
Publication year - 2007
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550350114
Subject(s) - mathematics , autoregressive model , univariate , invertible matrix , series (stratigraphy) , autoregressive–moving average model , statistics , kernel (algebra) , nuisance parameter
A consistent approach to the problem of testing non‐correlation between two univariate infinite‐order autoregressive models was proposed by Hong (1996). His test is based on a weighted sum of squares of residual cross‐correlations, with weights depending on a kernel function. In this paper, the author follows Hong's approach to test non‐correlation of two cointegrated (or partially non‐stationary) ARMA time series. The test of Pham, Roy & Cédras (2003) may be seen as a special case of his approach, as it corresponds to the choice of a truncated uniform kernel. The proposed procedure remains valid for testing non‐correlation between two stationary invertible multivariate ARMA time series. The author derives the asymptotic distribution of his test statistics under the null hypothesis and proves that his procedures are consistent. He also studies the level and power of his proposed tests in finite samples through simulation. Finally, he presents an illustration based on real data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here