z-logo
Premium
Nonparametric density estimation from data with a mixture of Berkson and classical errors
Author(s) -
Delaigle Aurore
Publication year - 2007
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550350109
Subject(s) - estimator , unobservable , nonparametric statistics , observational error , density estimation , convergence (economics) , variable (mathematics) , statistics , rate of convergence , mathematics , sample (material) , sample size determination , algorithm , computer science , econometrics , key (lock) , mathematical analysis , chemistry , computer security , chromatography , economics , economic growth
The author considers density estimation from contaminated data where the measurement errors come from two very different sources. A first error, of Berkson type, is incurred before the experiment: the variable X of interest is unobservable and only a surrogate can be measured. A second error, of classical type, is incurred after the experiment: the surrogate can only be observed with measurement error. The author develops two nonparametric estimators of the density of X , valid whenever Berkson, classical or a mixture of both errors are present. Rates of convergence of the estimators are derived and a fully data‐driven procedure is proposed. Finite sample performance is investigated via simulations and on a real data example.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom