z-logo
Premium
A class of partially linear single‐index survival models
Author(s) -
Lu Xuewen,
Chen Gemai,
Singh Radhey S.,
K.Song Peter X.
Publication year - 2006
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5550340108
Subject(s) - index (typography) , class (philosophy) , mathematics , statistics , computer science , artificial intelligence , world wide web
The authors define a class of “partially linear single‐index” survival models that are more flexible than the classical proportional hazards regression models in their treatment of covariates. The latter enter the proposed model either via a parametric linear form or a nonparametric single‐index form. It is then possible to model both linear and functional effects of covariates on the logarithm of the hazard function and if necessary, to reduce the dimensionality of multiple covariates via the single‐index component. The partially linear hazards model and the single‐index hazards model are special cases of the proposed model. The authors develop a likelihood‐based inference to estimate the model components via an iterative algorithm. They establish an asymptotic distribution theory for the proposed estimators, examine their finite‐sample behaviour through simulation, and use a set of real data to illustrate their approach.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here