Premium
Semiparametric estimation in copula models
Author(s) -
Tsukahara Hideatsu
Publication year - 2005
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.5540330304
Subject(s) - estimator , copula (linguistics) , asymptotic distribution , mathematics , bivariate analysis , monte carlo method , statistics , econometrics
The author recalls the limiting behaviour of the empirical copula process and applies it to prove some asymptotic properties of a minimum distance estimator for a Euclidean parameter in a copula model. The estimator in question is semiparametric in that no knowledge of the marginal distributions is necessary. The author also proposes another semiparametric estimator which he calls “rank approximate Z‐estimator” and whose asymptotic normality he derives. He further presents Monte Carlo simulation results for the comparison of various estimators in four well‐known bivariate copula models.