z-logo
Premium
Doubly sparse regression incorporating graphical structure among predictors
Author(s) -
Stephenson Matthew,
Ali R. Ayesha,
Darlington Gerarda A.
Publication year - 2019
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11521
Subject(s) - robustness (evolution) , computer science , graphical model , regression , regression analysis , linear regression , graph , representation (politics) , data set , data mining , artificial intelligence , machine learning , statistics , mathematics , theoretical computer science , biochemistry , chemistry , politics , political science , law , gene
Recent research has demonstrated that information learned from building a graphical model on the predictor set of a regularized linear regression model can be leveraged to improve prediction of a continuous outcome. In this article, we present a new model that encourages sparsity at both the level of the regression coefficients and the level of individual contributions in a decomposed representation. This model provides parameter estimates with a finite sample error bound and exhibits robustness to errors in the input graph structure. Through a simulation study and the analysis of two real data sets, we demonstrate that our model provides a predictive benefit when compared to previously proposed models. Furthermore, it is a highly flexible model that provides a unified framework for the fitting of many commonly used regularized regression models. The Canadian Journal of Statistics 47: 729–747; 2019 © 2019 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom