z-logo
Premium
Analysis of generalized semiparametric mixed varying‐coefficients models for longitudinal data
Author(s) -
Sun Yanqing,
Qi Li,
Heng Fei,
Gilbert Peter B.
Publication year - 2019
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11498
Subject(s) - covariate , estimator , nonparametric statistics , semiparametric model , semiparametric regression , statistics , smoothing , mathematics , econometrics , parametric statistics , mixed model , generalized estimating equation
The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352–373; 2019 © 2019 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here