Premium
Spatial Mallows model averaging for geostatistical models
Author(s) -
Liao Jun,
Zou Guohua,
Gao Yan
Publication year - 2019
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11497
Subject(s) - akaike information criterion , estimator , model selection , mathematics , spatial analysis , linear model , bayesian information criterion , statistics , variogram , kriging
Important progress has been made with model averaging methods over the past decades. For spatial data, however, the idea of model averaging has not been applied well. This article studies model averaging methods for the spatial geostatistical linear model. A spatial Mallows criterion is developed to choose weights for the model averaging estimator. The resulting estimator can achieve asymptotic optimality in terms of L 2 loss. Simulation experiments reveal that our proposed estimator is superior to the model averaging estimator by the Mallows criterion developed for ordinary linear models [Hansen, 2007] and the model selection estimator using the corrected Akaike's information criterion, developed for geostatistical linear models [Hoeting et al., 2006]. The Canadian Journal of Statistics 47: 336–351; 2019 © 2019 Statistical Society of Canada