z-logo
Premium
Predictive assessment of copula models
Author(s) -
Acar Elif F.,
Azimaee Parisa,
Hoque Md. Erfanul
Publication year - 2019
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11468
Subject(s) - copula (linguistics) , bivariate analysis , multivariate statistics , predictive power , econometrics , quantile , statistics , model selection , computer science , mathematics , philosophy , epistemology
Copulas are powerful explanatory tools for studying dependence patterns in multivariate data. While the primary use of copula models is in multivariate dependence modelling, they also offer predictive value for regression analysis. This article investigates the utility of copula models for model‐based predictions from two angles. We assess whether, where, and by how much various copula models differ in their predictions of a conditional mean and conditional quantiles. From a model selection perspective, we then evaluate the predictive discrepancy between copula models using in‐sample and out‐of‐sample predictions both in bivariate and higher‐dimensional settings. Our findings suggest that some copula models are more difficult to distinguish in terms of their overall predictive power than others, and depending on the quantity of interest, the differences in predictions can be detected only in some targeted regions. The situations where copula‐based regression approaches would be advantageous over traditional ones are discussed using simulated and real data. The Canadian Journal of Statistics 47: 8–26; 2019 © 2018 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here