z-logo
Premium
Restricted maximum likelihood estimation of joint mean‐covariance models
Author(s) -
Papageorgiou Georgios
Publication year - 2012
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11130
Subject(s) - cholesky decomposition , covariance , restricted maximum likelihood , covariance matrix , mathematics , statistics , degrees of freedom (physics and chemistry) , estimation of covariance matrices , estimation theory , eigenvalues and eigenvectors , physics , quantum mechanics
The class of joint mean‐covariance models uses the modified Cholesky decomposition of the within subject covariance matrix in order to arrive to an unconstrained, statistically meaningful reparameterisation. The new parameterisation of the covariance matrix has two sets of parameters that separately describe the variances and correlations. Thus, with the mean or regression parameters, these models have three sets of distinct parameters. In order to alleviate the problem of inefficient estimation and downward bias in the variance estimates, inherent in the maximum likelihood estimation procedure, the usual REML estimation procedure adjusts for the degrees of freedom lost due to the estimation of the mean parameters. Because of the parameterisation of the joint mean covariance models, it is possible to adapt the usual REML procedure in order to estimate the variance (correlation) parameters by taking into account the degrees of freedom lost by the estimation of both the mean and correlation (variance) parameters. To this end, here we propose adjustments to the estimation procedures based on the modified and adjusted profile likelihoods. The methods are illustrated by an application to a real data set and simulation studies. The Canadian Journal of Statistics 40: 225–242; 2012 © 2012 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here