z-logo
Premium
Sequential design for nonparametric inference
Author(s) -
Zhao Zhibiao,
Yao Weixin
Publication year - 2012
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11128
Subject(s) - mathematics , nonparametric statistics , quantile , statistics , inference , econometrics , computer science , artificial intelligence
The performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates the model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean and variance functions, the conditional distribution function, the conditional quantile function in quantile regression, functional coefficients in varying coefficient models and semiparametric inferences. Based on our empirical studies, nonparametric inference based on the proposed sequential design is more efficient than the uniform design and its performance is close to the true but unknown optimal design. The Canadian Journal of Statistics 40: 362–377; 2012 © 2012 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here