Premium
Comparison of k independent, zero‐heavy lognormal distributions
Author(s) -
Zidan Marwan,
Wang JungChao,
Niewiadomskabugaj Magdalena
Publication year - 2011
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10127
Subject(s) - mathematics , statistics , log normal distribution , wald test , likelihood ratio test , type i and type ii errors , zero (linguistics) , statistical hypothesis testing , philosophy , linguistics
Lachenbruch (1976, 2001) introduced two‐part tests for comparison of two means in zero‐inflated continuous data. We are extending this approach and compare k independent distributions (by comparing their means, either overall or the departure from equal proportion of zeros and equal means of nonzero values) by introducing two tests: a two‐part Wald test and a two‐part likelihood ratio test. If the continuous part of the distributions is lognormal then the proposed two test statistics have asymptotically chi‐square distribution with $2(k-1)$ degrees of freedom. A simulation study was conducted to compare the performance of the proposed tests with several well‐known tests such as ANOVA, Welch (1951), Brown & Forsythe (1974), Kruskal–Wallis, and one‐part Wald test proposed by Tu & Zhou (1999). Results indicate that the proposed tests keep the nominal type I error and have consistently best power among all tests being compared. An application to rainfall data is provided as an example. The Canadian Journal of Statistics 39: 690–702; 2011. © 2011 Statistical Society of Canada
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom