z-logo
Premium
Mean squared error estimators of small area means using survey weights
Author(s) -
Torabi Mahmoud,
Rao Jon N. K.
Publication year - 2010
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10078
Subject(s) - mean squared error , estimator , mathematics , statistics , small area estimation , bias of an estimator , best linear unbiased prediction , efficient estimator , consistency (knowledge bases) , minimum variance unbiased estimator , econometrics , computer science , discrete mathematics , artificial intelligence , selection (genetic algorithm)
Using survey weights, You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] proposed a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator of a small area mean under a nested error linear regression model. This estimator borrows strength across areas through a linking model, and makes use of survey weights to ensure design consistency and preserve benchmarking property in the sense that the estimators add up to a reliable direct estimator of the mean of a large area covering the small areas. In this article, a second‐order approximation to the mean squared error (MSE) of the pseudo‐EBLUP estimator of a small area mean is derived. Using this approximation, an estimator of MSE that is nearly unbiased is derived; the MSE estimator of You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] ignored cross‐product terms in the MSE and hence it is biased. Empirical results on the performance of the proposed MSE estimator are also presented. The Canadian Journal of Statistics 38: 598–608; 2010 © 2010 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom