z-logo
Premium
Mean squared error estimators of small area means using survey weights
Author(s) -
Torabi Mahmoud,
Rao Jon N. K.
Publication year - 2010
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10078
Subject(s) - mean squared error , estimator , mathematics , statistics , small area estimation , bias of an estimator , best linear unbiased prediction , efficient estimator , consistency (knowledge bases) , minimum variance unbiased estimator , econometrics , computer science , discrete mathematics , artificial intelligence , selection (genetic algorithm)
Using survey weights, You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] proposed a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator of a small area mean under a nested error linear regression model. This estimator borrows strength across areas through a linking model, and makes use of survey weights to ensure design consistency and preserve benchmarking property in the sense that the estimators add up to a reliable direct estimator of the mean of a large area covering the small areas. In this article, a second‐order approximation to the mean squared error (MSE) of the pseudo‐EBLUP estimator of a small area mean is derived. Using this approximation, an estimator of MSE that is nearly unbiased is derived; the MSE estimator of You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] ignored cross‐product terms in the MSE and hence it is biased. Empirical results on the performance of the proposed MSE estimator are also presented. The Canadian Journal of Statistics 38: 598–608; 2010 © 2010 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here