z-logo
Premium
Bayesian hierarchical models for food frequency assessment
Author(s) -
Song HaeRyoung,
Lawson Andrew B.,
Nitcheva Daniela
Publication year - 2010
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10052
Subject(s) - bayesian probability , bayesian hierarchical modeling , computer science , artificial intelligence , bayesian inference , econometrics , mathematics
The aim of this study is to assess the biases of a Food Frequency Questionnaire (FFQ) by comparing total energy intake (TEI) with total energy expenditure (TEE) obtained from doubly labelled water(DLW) biomarker after adjusting measurement errors in DLW. We develop several Bayesian hierarchical measurement error models of DLW with different distributional assumptions on TEI to obtain precise bias estimates of TEI. Inference is carried out by using MCMC simulation techniques in a fully Bayesian framework, and model comparisons are done via the mean square predictive error. Our results showed that the joint model with random effects under the Gamma distribution is the best fit model in terms of the MSPE and residual diagnostics, in which bias in TEI is not significant based on the 95% credible interval. The Canadian Journal of Statistics 38: 506–516; 2010 © 2010 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here