Premium
Variable selection in spatial regression via penalized least squares
Author(s) -
Wang Haonan,
Zhu Jun
Publication year - 2009
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10032
Subject(s) - statistics , feature selection , mathematics , least squares function approximation , least absolute deviations , oracle , regression analysis , variable (mathematics) , partial least squares regression , selection (genetic algorithm) , regression , linear regression , ordinary least squares , generalized least squares , computer science , estimator , artificial intelligence , mathematical analysis , software engineering
We consider variable selection in linear regression of geostatistical data that arise often in environmental and ecological studies. A penalized least squares procedure is studied for simultaneous variable selection and parameter estimation. Various penalty functions are considered including smoothly clipped absolute deviation. Asymptotic properties of penalized least squares estimates, particularly the oracle properties, are established, under suitable regularity conditions imposed on a random field model for the error process. Moreover, computationally feasible algorithms are proposed for estimating regression coefficients and their standard errors. Finite‐sample properties of the proposed methods are investigated in a simulation study and comparison is made among different penalty functions. The methods are illustrated by an ecological dataset of landcover in Wisconsin. The Canadian Journal of Statistics 37: 607–624; 2009 © 2009 Statistical Society of Canada