z-logo
Premium
On the incidence–prevalence relation and length‐biased sampling
Author(s) -
Addona Vittorio,
Asgharian Masoud,
Wolfson David B.
Publication year - 2009
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.10011
Subject(s) - statistics , incidence (geometry) , estimator , confidence interval , mathematics , demography , logistic regression , odds ratio , cohort , population , medicine , econometrics , geometry , sociology
For many diseases, logistic constraints render large incidence studies difficult to carry out. This becomes a drawback, particularly when a new study is needed each time the incidence rate is investigated in a new population. By carrying out a prevalent cohort study with follow‐up it is possible to estimate the incidence rate if it is constant. The authors derive the maximum likelihood estimator (MLE) of the overall incidence rate, λ, as well as age‐specific incidence rates, by exploiting the epidemiologic relationship, (prevalence odds) = (incidence rate) × (mean duration) ( P /[1 −  P ] = λ × µ). The authors establish the asymptotic distributions of the MLEs and provide approximate confidence intervals for the parameters. Moreover, the MLE of λ is asymptotically most efficient and is the natural estimator obtained by substituting the marginal maximum likelihood estimators for P and µ into P /[1 −  P ] = λ × µ. Following‐up the subjects allows the authors to develop these widely applicable procedures. The authors apply their methods to data collected as part of the Canadian Study of Health and Ageing to estimate the incidence rate of dementia amongst elderly Canadians. The Canadian Journal of Statistics © 2009 Statistical Society of Canada

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here