z-logo
Premium
Preparation of a Xanthine Sensor Based on the Immobilization of Xanthine Oxidase on a Chitosan Modified Electrode by Cross‐linking
Author(s) -
Liu Yuge,
Li Weiming,
Wei Changbin,
Lü Lingling
Publication year - 2012
Publication title -
chinese journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.28
H-Index - 41
eISSN - 1614-7065
pISSN - 1001-604X
DOI - 10.1002/cjoc.201100477
Subject(s) - chemistry , xanthine , xanthine oxidase , glutaraldehyde , hypoxanthine , chitosan , electrode , biosensor , detection limit , nuclear chemistry , electrochemistry , selectivity , immobilized enzyme , chromatography , organic chemistry , enzyme , biochemistry , catalysis
Here in this paper, xanthine oxidase (XOD) was immobilized onto the chitosan (CHT) modified electrode by a simple way of cross‐linking with glutaraldehyde (GTD) and 3‐aminopropyltriethoxysilane (KH). The electrode displayed a sharp peak to the oxidation of xanthine at a potential about 0.67 V and the optimum of pH for determination was investigated. Under the optimum conditions, the biosensor fabricated on the KH/GTD/XOD/CHT modified electrode showed excellent response to the oxidation of xanthine within the range of 0.5 to 18 μmol/L with a low detection limit of 0.0215 µmol/L, a good stability and a high selectivity. The sensor can also be used for the determination of hypoxanthine. The electrochemical results indicated that the immobilized enzyme still retained its biological activity and this provided a new way for the construction of biosensors and determination of xanthine.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom