z-logo
Premium
Synthesis and Characterization of PE‐g‐MA/MgAl‐LDH Exfoliation Nanocomposite via Solution Intercalation
Author(s) -
Wei Chen,,
BaoJun Qu,
Publication year - 2003
Publication title -
chinese journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.28
H-Index - 41
eISSN - 1614-7065
pISSN - 1001-604X
DOI - 10.1002/cjoc.20030210804
Subject(s) - exfoliation joint , nanocomposite , chemistry , hydroxide , thermal stability , thermogravimetry , thermal decomposition , intercalation (chemistry) , nuclear chemistry , chemical engineering , thermogravimetric analysis , polymer chemistry , materials science , composite material , inorganic chemistry , organic chemistry , graphene , engineering
An organo‐modified MgAl‐layered double hydroxide (OMgAl‐LDH) was successfully exfoliated in the xylene solution of polyethylene‐grafted‐maleic anhydride (PE‐g‐MA) under re‐fluxing condition. A PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite was formed after the precipitation of PE‐g‐MA from the dispersion system. The structure and thermal property of the PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry analysis (TGA). The disappearance of d 001 XRD peak of OMgAl‐LDH at 20 = 3.2° suggests that the MgAl hydroxide sheets are exfoliated in the nanocomposite. The TEM image shows that the MgAl hydroxide sheets of less than 70 nm in length or width are exfoliated and dispersed disorderly in PE‐g‐MA matrix. TGA profiles indicate that the PE‐g‐MA/MgAl‐LDH nanocomposite with 5 wt% OMgAl‐LDH loading shows a faster charring process in temperature range from 210 to 390 °C and a greater thermal stability beyond 390 °C than PE‐g‐MA does. The decomposition temperature of the nanocomposite is 25 °C higher than that of PE‐g‐MA as measured at 50% weight loss. The PE‐g‐MA/MgAl‐LDH nanocomposite is promising for application of flame‐retardant polymeric materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here