z-logo
Premium
The Limits of Fine and Coarse Particle Flotation
Author(s) -
De F. Gontijo Carlos,
Fornasiero Daniel,
Ralston John
Publication year - 2007
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450850519
Subject(s) - bubble , particle (ecology) , particle size , range (aeronautics) , turbulence , quartz , materials science , aggregate (composite) , mechanics , rushton turbine , mineralogy , chemistry , physics , composite material , geology , oceanography
The flotation behaviour of quartz particles was studied over the particle size range from 0.5 µm to 1000 µm and for advancing water contact angles between 0° and 83°. Flotation was performed in a column and in a Rushton turbine cell. Particle contact angle threshold values, below which the particles could not be floated, were identified for the particle size range 0.5–1000 µm, under different hydrodynamic conditions. The flotation response of the particles, either in a column or in a mechanically agitated cell with a similar bubble size, was comparable. Turbulence plays a role, as does bubble‐particle aggregate velocity and bubble size. The stability of the bubble‐particle aggregate controls the maximum floatable particle size of coarse particles. For fine particles, the flotation limit is dictated by the energy required to rupture the intervening liquid film between the particle and bubble. Flotation of very fine and large particles is facilitated with small bubbles and high contact angles. These results greatly extend our earlier observations and theoretical predictions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here