Premium
Three‐stage well‐mixed reactor model for a pressurized coal gasifier
Author(s) -
Song B. H.,
Watkinson A. Paul
Publication year - 2000
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450780119
Subject(s) - char , wood gas generator , coal , tar (computing) , isothermal process , carbon fibers , coal gasification , combustion , sorbent , coal rank , decomposition , waste management , chemical engineering , chemistry , environmental science , materials science , thermodynamics , engineering , organic chemistry , adsorption , composite material , physics , composite number , computer science , programming language
Three Canadian coals of different rank were gasified with air‐steam mixtures in a 0.1 m diameter spouted bed reactor at pressures to 292 kPa, average bed temperatures varying between 840 and 960°C, and steam‐to‐coal feed ratios between 0.0 and 2.88. In order to analyze gasifier performance and correlate data, a three‐stage model has been developed incorporating instantaneous devolatilization of coal, instantaneous combustion of carbon at the bottom of the bed, and steam/carbon gasification and water gas shift reaction in a single well mixed isothermal stage. The capture of H 2 S by limestone sorbent injection is also treated. The effects of various assumptions and model parameters on the predictions were investigated. The present model indicates that gasifier performance is mainly controlled by the fast coal devolatilization and char combustion reactions, and the contribution to carbon conversion of the slow char gasification reactions is comparatively small. The incorporation of tar decomposition into the model provides significantly closer predictions of experimental gas composition than is obtained otherwise.