Premium
Collapse of dilute suspension in different circulating fluidized bed risers with respect to different particles
Author(s) -
Xu Guangwen,
Nomura Kousuke,
Nakagawa Nobuyoshi,
Kato Kunio
Publication year - 1999
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450770208
Subject(s) - suspension (topology) , fluidized bed combustion , materials science , saturation (graph theory) , pressure drop , drop (telecommunication) , mechanics , thermodynamics , fluidized bed , physics , telecommunications , mathematics , combinatorics , homotopy , pure mathematics , computer science
The collapse of dilute suspension was studied in three different circulating fluidized bed (CFB) risers with two types of particles. The risers had the same height of 3.0 m but different inner diameters of 66 mm, 97 mm and 150 mm, respectively. FCC particles (Geldart A) and silica sand particles (Geldart B) were used. It was found that the collapse of dilute suspension is characterized by rapid accumulation of particles at the riser bottom, independent of the riser diameter and the types of particles. In accordance with the observation, an approach was developed to determine the collapsing point from experimental measurements. Then, the dilute suspension collapse was found to be dominated by an identical differential pressure drop at the riser bottom. This critical pressure drop is independent of gas velocity and riser diameter, whereas varies with the properties of particles. Riser diameter has different influences for FCC and silica sand particles upon the saturation carrying capacity, the solids circulation rate at the dilute suspension collapse. Under a given gas velocity, the collapse in a larger riser is observed to take place at a larger solids circulation rate for FCC, but at a smaller solids circulation rate for silica sand. This diversified dependence on riser diameter of the saturation carrying capacity was identified as a result of the different influences of the riser diameter on the bed density for those two types of particles.