Premium
Prediction of steady‐state dispersion height in the disengaging section of an extraction column from batch settling data
Author(s) -
Dalingaros W.,
Jeelani S. A. K.,
Hartland S.
Publication year - 1987
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450650203
Subject(s) - dimensionless quantity , dispersion (optics) , mechanics , settling , steady state (chemistry) , drop (telecommunication) , extraction (chemistry) , constant (computer programming) , section (typography) , settling time , mathematics , materials science , physics , chemistry , thermodynamics , chromatography , optics , engineering , computer science , telecommunications , programming language , operating system , control engineering , step response
The decay of a dense dispersion formed under calm conditions is given by\documentclass{article}\pagestyle{empty}\begin{document}$$ h^{1/2} = h_a^{1/2} - \frac{1}{2}\left( {\frac{{g\phi _o }}{K}} \right)^{1/2} \left( {\frac{{\Delta \rho g}}{\sigma }} \right)^{1/4} t $$\end{document}Experiments in a batch vessel with different liquid‐liquid systems and initial drop diameters show that the dimensionless constant K is equal to 26,000. This agrees with the value previously determined from the variation in steady‐state dispersion height with throughput in spray columns, the analogous equation being\documentclass{article}\pagestyle{empty}\begin{document}$$ H = \frac{K}{{g\phi _o }}\left( {\frac{\sigma }{{\Delta \rho g}}} \right)^{1/2} \left( {\frac{{Q_d }}{{A\bar \in }}} \right)^2 $$\end{document}The results can thus be used to predict the height of the dispersion formed in the disengaging section of extraction columns.