z-logo
Premium
Heat transfer to agitated non‐newtonian fluids
Author(s) -
Carreau Pierre,
Charest Guy,
Corneille Jean L.
Publication year - 1966
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450440101
Subject(s) - thermodynamics , reynolds number , newtonian fluid , heat transfer , non newtonian fluid , materials science , mechanics , heat transfer fluid , heat transmission , physics , composite material , turbulence
Heat transmission to agitated non‐Newtonian liquids in a jacketed vessel has been studied. Heat transfer tests were conducted under unsteady‐state conditions with pseudo‐plastic solutions (behavior index range: 0.343 to 0.633). For a generalized Reynolds number ranging from 100 to 5000, two correlations were found:\documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{lr}{{\rm Heating}\;{\rm data:}\,N_{Nu} = 3.41\,N_{Re'^{\frac{2}{3}} } N_{Pr ^{\frac{1}{3}} } } & {} \\ {} & {({\rm mean}\,{\rm deviation}\,{\rm :}11.8\%)} \\ {{\rm Cooling}\,{\rm data:}\,N_{Nu} = 1.43\,N_{Re'^{\frac{2}{3}} } N_{\Pr ^{\frac{1}{3}} } } & {} \\ {} & {({\rm mean}\,{\rm deviation}\,{\rm :}14.0\%)} \end{array} $$\end{document}The use of a generalized Sieder and Tate number resulted in an equation combining both heating and cooling data with a somewhat higher mean deviation (19.3%):\documentclass{article}\pagestyle{empty}\begin{document}$$ N_{Nu} = 1.474\;N_{Re'^{\frac{2}{3}} } N_{Pr^{\frac{1}{3}} } (\mu d_w /\mu d)_\alpha - 0.24/n. $$\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here