z-logo
Premium
Holdup in liquid‐liquid extraction columns
Author(s) -
Johnson A. I.,
Lavergne E. A. L.
Publication year - 1961
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450390107
Subject(s) - countercurrent exchange , liquid phase , extraction (chemistry) , flow (mathematics) , chemistry , liquid liquid , phase (matter) , mathematics , chromatography , thermodynamics , physics , combinatorics , analytical chemistry (journal) , geometry , organic chemistry
Abstract A theoretical study of the countercurrent flow of a dispersed phase in a continuous phase resulted in the following equation relating holdup X to the flow rates of the two phases.\documentclass{article}\pagestyle{empty}\begin{document}$$ A\left({\frac{{U_C}}{{U_D}}} \right)^{2 - n} \left({\frac{X}{{1 - X}}} \right)^3 + B = \frac{{X^3}}{{U_D ^{2 - n}}} $$\end{document}For packed towers this equation has been used in the following form:\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{X^3}}{{U_D ^{1.5}}} = A'\frac{{U_C ^r}}{{U_D ^{1.5}}}\left({\frac{X}{{1 - X}}} \right)^3 + B' $$\end{document}Values of A', B' , and r for three liquid pairs, and two packing types are reported, using new holdup data determined in this research. Graphical correlations are shown and values of r are reported for some of the data of Gayler and Pratt. For spray towers the equation suggested a correlation of \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{X^3}}{{U_D ^{1.8}}} $\end{document} against the group \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{U_C ^{0.2}}}{{U_D ^{1.8}}}\left({\frac{X}{{1 - X}}} \right)^3 $\end{document} This has been tested using data previously published by one of the authors.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here