Premium
Holdup in liquid‐liquid extraction columns
Author(s) -
Johnson A. I.,
Lavergne E. A. L.
Publication year - 1961
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.5450390107
Subject(s) - countercurrent exchange , liquid phase , extraction (chemistry) , flow (mathematics) , chemistry , liquid liquid , phase (matter) , mathematics , chromatography , thermodynamics , physics , combinatorics , analytical chemistry (journal) , geometry , organic chemistry
Abstract A theoretical study of the countercurrent flow of a dispersed phase in a continuous phase resulted in the following equation relating holdup X to the flow rates of the two phases.\documentclass{article}\pagestyle{empty}\begin{document}$$ A\left({\frac{{U_C}}{{U_D}}} \right)^{2 - n} \left({\frac{X}{{1 - X}}} \right)^3 + B = \frac{{X^3}}{{U_D ^{2 - n}}} $$\end{document}For packed towers this equation has been used in the following form:\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{X^3}}{{U_D ^{1.5}}} = A'\frac{{U_C ^r}}{{U_D ^{1.5}}}\left({\frac{X}{{1 - X}}} \right)^3 + B' $$\end{document}Values of A', B' , and r for three liquid pairs, and two packing types are reported, using new holdup data determined in this research. Graphical correlations are shown and values of r are reported for some of the data of Gayler and Pratt. For spray towers the equation suggested a correlation of \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{X^3}}{{U_D ^{1.8}}} $\end{document} against the group \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{U_C ^{0.2}}}{{U_D ^{1.8}}}\left({\frac{X}{{1 - X}}} \right)^3 $\end{document} This has been tested using data previously published by one of the authors.