z-logo
Premium
Gaseous ozone decomposition over high silica zeolitic frameworks
Author(s) -
Brodu Nicolas,
Manero MarieHélène,
Andriantsiferana Caroline,
Pic JeanStéphane,
Valdés Héctor
Publication year - 2018
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.23141
Subject(s) - zeolite , ozone , faujasite , chemistry , mordenite , microporous material , decomposition , chemical engineering , catalysis , molecule , lewis acids and bases , inorganic chemistry , organic chemistry , engineering
For several decades, it has been known that ozone emissions are harmful to humans, plants, and animals. Heterogeneous catalytic decomposition is an efficient process for removing ozone from air. This study examines the effect of the zeolite's framework and pore width on efficiency for decomposing gaseous ozone. Four highly hydrophobic zeolites are used: a large cavity zeolite (Faujasite/H‐FAU), a medium pore zeolite with parallel channel (Mordenite/H‐MOR), and two medium pore zeolites with interconnected channels (H‐ZSM‐5/H‐MFI and Na‐ZSM‐5/Na‐MFI). Experiments were conducted in fixed‐bed flow reactors loaded with zeolite at ambient conditions (20 °C and 101 kPa). Zeolite surfaces were analyzed during the experiments in order to understand the influence of physical and chemical surface properties on the ozone decomposition mechanism. A higher amount of ozone is eliminated using H‐MOR, compared with the zeolite samples H‐FAU, H‐MFI, and Na‐MFI. Pore width and micropore framework size distribution (channel and cages) appear to be key factors. A narrow channel or cage, slightly larger than the ozone molecule size, seems to promote ozone interactions with Lewis acid sites. Fourier transform infrared spectroscopy shows that Lewis acid sites (LAS), located on the walls of zeolite pores, decompose ozone. This leads to the formation of atomic oxygen species that could react with another ozone molecule to form dioxygen. Hence, LAS are regenerated, ready to decompose another ozone molecule once more.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here