z-logo
Premium
Influence of pretreatment conditions on composition of liquid hydrolysate and subsequent enzymatic saccharification of remaining solids
Author(s) -
Dhabhai Ravi,
Chaurasia Satyendra P.,
Dalai Ajay K.
Publication year - 2013
Publication title -
the canadian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 67
eISSN - 1939-019X
pISSN - 0008-4034
DOI - 10.1002/cjce.21746
Subject(s) - hydrolysate , xylose , chemistry , hydrolysis , furfural , dry matter , enzymatic hydrolysis , yield (engineering) , biomass (ecology) , acetic acid , sugar , food science , chromatography , biochemistry , fermentation , zoology , agronomy , catalysis , materials science , biology , metallurgy
In the present work, the effect of dilute acid pretreatment was studied on the composition of liquid hydrolysate obtained after pretreatment by employing different combinations of process variables (temperature, time and acid concentration). The effect of pretreatment was also studied on subsequent enzymatic saccharification of remaining solids to obtain maximum yield of sugars. The efficiency of pretreatment was measured in terms of high‐xylose and low‐glucose yields, which was found most suitable at pretreatment conditions of 120°C, 120 min and 2% (v/v) acid concentration. With increased severity of pretreatment, xylose yield decreased with concomitant increase in glucose yield. The decrease in xylose yield was attributed to conversion into degradation products such as 5‐hydroxylmethyl furfural (HMF) and acetic acid. The percentage of enzymatic saccharification increased with increased pretreatment severity. Saccharification of biomass pretreated at 180°C, 7 min and 0.5% (v/v) acid concentration produced the maximum glucose yield of saccharification of 352 g/kg dry matter, compared to just 97 g glucose/kg dry matter in the case of untreated biomass. The same pretreatment conditions resulted in maximum total sugar yield of pretreatment and saccharification of 459 g/kg dry matter, which was more than 67% of the total potential sugars in biomass. © 2012 Canadian Society for Chemical Engineering

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom