Premium
Systematic Simulation Strategy of Plasma Methane Pyrolysis for CO 2 ‐Free H 2
Author(s) -
Magazova Aliya,
Böddeker Simon,
Bibinov Nikita,
Agar David W.
Publication year - 2022
Publication title -
chemie ingenieur technik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 36
eISSN - 1522-2640
pISSN - 0009-286X
DOI - 10.1002/cite.202100181
Subject(s) - methane , pyrolysis , plasma , hydrogen , argon , raw material , process engineering , nuclear engineering , chemistry , materials science , computer science , chemical engineering , environmental science , engineering , physics , organic chemistry , nuclear physics
Recently, the direct conversion of methane into hydrogen using cold plasma reactors has attracted increasing attention, since hydrogen has considerable potential as a future feedstock in the steel and chemical industries. However, the simulation of plasma pyrolysis reactors is extremely complex due to the vast temporal and spatial ranges of the variables involved and steep gradients. Previously, methane pyrolysis has been meticulously modeled by 0D simulations, and 3D plasma modeling has been largely confined to Argon systems. In this paper, a systematic methodology is presented, which provides an expedient and efficient hierarchy of 0D to 3D simulations, in order to approximate the methane pyrolysis simulation of a plasma reactor in its entirety. Various simulation tools are applied in a coordinated and pragmatic manner. The results show that the proposed synergy allows simplification of the reaction set and arc characteristics, significantly reducing the runtime required for the simulations.