Premium
Optimization of ASE and SPE conditions for the HPLC‐FLD detection of piperazine in chicken tissues and pork
Author(s) -
Liu Chujun,
Xie Xing,
Wang Bo,
Zhao Xia,
Guo Yawen,
Zhang Yangyang,
Bu Xiaona,
Xie Kaizhou,
Wang Yajuan,
Zhang Tao,
Zhang Genxi,
Liu Xuezhong,
Dai Guojun,
Wang Jinyu
Publication year - 2019
Publication title -
chirality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.43
H-Index - 77
eISSN - 1520-636X
pISSN - 0899-0042
DOI - 10.1002/chir.23117
Subject(s) - chemistry , detection limit , chromatography , piperazine , dansyl chloride , solid phase extraction , formic acid , high performance liquid chromatography , derivatization , acetonitrile , ultrapure water , residue (chemistry) , biochemistry , materials science , organic chemistry , nanotechnology
Accelerated solvent extraction (ASE) and solid‐phase extraction (SPE) conditions were optimized by a high‐performance liquid chromatography‐fluorescence detector (HPLC‐FLD) method for the detection of piperazine in chicken tissues and pork. Piperazine residues were determined by precolumn derivatization with trimethylamine and dansyl chloride. Samples were extracted with 2% formic acid in acetonitrile using an ASE apparatus and purified using a Strata‐X‐C SPE column. The monosubstituted product of the reaction of piperazine with dansyl chloride was 1‐dansyl piperazine (1‐DNS‐piperazine). Chromatographic separations were performed on an Athena C 18 column (250 × 4.6 mm, id: 5 μm) with gradient elution using ultrapure water and acetonitrile (5:95, V/V) as the mobile phase. The calibration curves showed good linearity over a concentration range of LOQ‐200.0 μg/kg with a coefficient of determination ( R 2 ) ≥ .9992. The recoveries and relative standard deviations (RSD values) ranged from 78.49% to 97.56% and 1.19% to 5.32%, respectively, across the limit of quantification (LOQ) and 0.5, 1, and 2.0 times the maximum residue limit (MRL; μg/kg). The limits of detection (LODs) and LOQs were 0.96 to 1.85 μg/kg and 3.20 to 5.50 μg/kg, respectively. The method was successfully applied for the validation of animal products in the laboratory.