z-logo
Premium
Exploration of the expeditious potential of Pseudomonas fluorescens lipase in the kinetic resolution of racemic intermediates and its validation through molecular docking
Author(s) -
Soni Surbhi,
Dwivedee Bharat P.,
Sharma Vishnu K.,
Patel Gopal,
Banerjee Uttam C.
Publication year - 2018
Publication title -
chirality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.43
H-Index - 77
eISSN - 1520-636X
pISSN - 0899-0042
DOI - 10.1002/chir.22771
Subject(s) - chemistry , pseudomonas fluorescens , kinetic resolution , lipase , docking (animal) , pseudomonas , stereochemistry , enzyme , organic chemistry , enantioselective synthesis , catalysis , bacteria , medicine , genetics , nursing , biology
A profoundly time‐efficient chemoenzymatic method for the synthesis of ( S ) ‐ 3‐(4‐chlorophenoxy)propan‐1,2‐diol and ( S ) ‐ 1‐chloro‐3‐(2,5‐dichlorophenoxy)propan‐2‐ol, two important pharmaceutical intermediates, was successfully developed using Pseudomonas fluorescens lipase (PFL). Kinetic resolution was successfully achieved using vinyl acetate as acylating agent, toluene/hexane as solvent, and reaction temperature of 30°C giving high enantioselectivity and conversion. Under optimized condition, PFL demonstrated 50.2% conversion, enantiomeric excess of 95.0%, enantioselectivity (E = 153) in an optimum time of 1 hour and 50.3% conversion, enantiomeric excess of 95.2%, enantioselectivity (E = 161) in an optimum time of 3 hours, for the two racemic alcohols, respectively. Docking of the R‐ and S ‐enantiomers of the intermediates demonstrated stronger H‐bond interaction between the hydroxyl group of the R ‐enantiomer and the key binding residues of the catalytic site of the lipase, while the S ‐enantiomer demonstrated lesser interaction. Thus, docking study complemented the experimental outcome that PFL preferentially acylated the R form of the intermediates. The present study demonstrates a cost‐effective and expeditious biocatalytic process that can be applied in the enantiopure synthesis of pharmaceutical intermediates and drugs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here