z-logo
Premium
Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations
Author(s) -
Tang Shouwan,
Jin Zhaolei,
Sun Baishen,
Wang Fang,
Tang Wenyuan
Publication year - 2017
Publication title -
chirality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.43
H-Index - 77
eISSN - 1520-636X
pISSN - 0899-0042
DOI - 10.1002/chir.22720
Subject(s) - chemistry , amylose , high performance liquid chromatography , ethanol , chiral derivatizing agent , chromatography , organic chemistry , chiral column chromatography , starch
Six novel regioselectively substituted amylose derivatives with a benzoate at 2‐position and two different phenylcarbamates at 3‐ and 6‐positions were synthesized and their structures were characterized by 1 H nuclear magnetic resonance (NMR) spectroscopy. Their enantioseparation abilities were then examined as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after they were coated on 3‐aminopropyl silica gels. Investigations indicated that the substituents at the 3‐ and 6‐positions played an important role in chiral recognition of these amylose 2‐benzoate serial derivatives. The derivatives demonstrated characteristic enantioseparation and some racemates were better resolved on these derivatives than on Chiralpak AD, which is one of the most efficient CSPs, utilizing coated amylose tris(3,5‐dimethylphenylcarbamate) as the chiral selector. Among the derivatives prepared, amylose 2‐benzoate‐3‐(phenylcarbamate/4‐methylphenylcarbamate)‐6‐(3,5‐dimethylphenylcarbamate) exhibited chiral recognition abilities comparable to that of Chiralpak AD and may be useful CSPs in the future. The effect of mobile phase on chiral recognition was also studied. In general, with the decreased concentration of 2‐propanol, better resolutions were obtained with longer retention times. Moreover, when ethanol was used instead of 2‐propanol, poorer resolutions were often achieved. However, in some cases, improved enantioselectivity was achieved with ethanol rather than 2‐propanol as the mobile phase modifier.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here