Premium
Chiral separation of neonicotinoid insecticides by polysaccharide‐type stationary phases using high‐performance liquid chromatography and supercritical fluid chromatography
Author(s) -
Zhang Cheng,
Jin Lixia,
Zhou Shanshan,
Zhang Yifan,
Feng Shuoli,
Zhou Qinyan
Publication year - 2011
Publication title -
chirality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.43
H-Index - 77
eISSN - 1520-636X
pISSN - 0899-0042
DOI - 10.1002/chir.20898
Subject(s) - chemistry , supercritical fluid chromatography , enantiomer , chromatography , high performance liquid chromatography , enthalpy , chirality (physics) , chiral column chromatography , supercritical fluid , organic chemistry , thermodynamics , physics , chiral symmetry breaking , nambu–jona lasinio model , quark , quantum mechanics
The enantiomeric separations of three neonicotinoid insecticides (identified as compounds 1 , 2 , and 3 ) were performed on three polysaccharide‐type chiral columns, that is, Chiralcel OD‐H, Chiralpak AD‐H, and Chiralpak IB, by high‐performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Effects of the modifier percentage and column temperature on chiral recognitions of chiral stationary phases were also studied. Both 1 and 2 could be resolved on all three columns selected, with the highest R s values obtained on Chiralpak AD‐H and Chiralcel OD‐H, respectively. However, satisfactory separation of the four stereoisomers of 3 was only achieved on Chiralcel OD‐H. Considering the effects of ethanol on the values of k , α, and R s , we concluded that hydrogen bonding, π–π, and/or dipole–dipole interactions might be all responsible for the chiral separation. In comparison to HPLC, a shorter run time was achieved for 1 and 2 by SFC. However, 3 could not be stereoselectively resolved using SFC. On the basis of the calculated thermodynamic parameters, we found that the separation processes of enantiomers of 1 and 2 were entropy controlled and enthalpy controlled, respectively. Chirality, 2011. © 2010 Wiley‐Liss, Inc.