z-logo
Premium
Effect of bile and lipids on the stereoselective metabolism of halofantrine by rat everted‐intestinal sacs
Author(s) -
Patel Jigar P.,
Korashy Hesham M.,
ElKadi Ayman O.S.,
Brocks Dion R.
Publication year - 2010
Publication title -
chirality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.43
H-Index - 77
eISSN - 1520-636X
pISSN - 0899-0042
DOI - 10.1002/chir.20740
Subject(s) - chemistry , halofantrine , metabolism , metabolite , enantiomer , incubation , medicine , cholesterol , endocrinology , biochemistry , lecithin , in vivo , biology , stereochemistry , mefloquine , chloroquine , malaria , immunology , microbiology and biotechnology
The everted rat intestinal‐sac model was utilized to assess the effect of post‐prandial conditions on the stereoselective intestinal metabolism of halofantrine to its active metabolite desbutylhalofantrine. Everted intestinal sacs were incubated with (±)‐halofantrine HCl in the presence of simulated bile solution (containing lecithin, lipase and cholesterol) and lipids to mimic post‐prandial conditions in the small intestine. The halofantrine enantiomer concentrations in intestinal sacs were relatively constant in the presence of bile, but decreased significantly on addition of lipids to the incubation media. Formation of desbutylhalofantrine enantiomers was inversely proportional to bile concentration whereas addition of lipids in the presence of bile caused a significant decrease in desbutylhalofantrine:halofantrine ratio of (−) enantiomers. Pre‐treatment of rats with peanut oil had no significant effect on desbutylhalofantrine formation in the incubated sacs or microsomal preparations, nor did it affect the expression of intestinal cytochrome P450. Addition of extra cholesterol to the bile incubations caused a significant increase in tissue halofantrine and desbutylhalofantrine concentrations, which as for lower cholesterol, were diminished on addition of other lipids. The results were consistent with previous in vivo evaluations showing that the desbutylhalofantrine to halofantrine ratio was decreased by the ingestion of a high fat meal. Chirality, 2010. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here