Premium
How Ionization Catalyzes Diels‐Alder Reactions
Author(s) -
Vermeeren Pascal,
Hamlin Trevor A.,
Bickelhaupt F. Matthias
Publication year - 2022
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.202200987
Subject(s) - diels–alder reaction , chemistry , molecular orbital , concerted reaction , diene , density functional theory , steric effects , computational chemistry , reactivity (psychology) , photochemistry , catalysis , stereochemistry , molecule , organic chemistry , medicine , natural rubber , alternative medicine , pathology
The catalytic effect of ionization on the Diels‐Alder reaction between 1,3‐butadiene and acrylaldehyde has been studied using relativistic density functional theory (DFT). Removal of an electron from the dienophile, acrylaldehyde, significantly accelerates the Diels‐Alder reaction and shifts the reaction mechanism from concerted asynchronous for the neutral Diels‐Alder reaction to stepwise for the radical‐cation Diels‐Alder reaction. Our detailed activation strain and Kohn‐Sham molecular orbital analyses reveal how ionization of the dienophile enhances the Diels‐Alder reactivity via two mechanisms: (i) by amplifying the asymmetry in the dienophile's occupied π‐orbitals to such an extent that the reaction goes from concerted asynchronous to stepwise and thus with substantially less steric (Pauli) repulsion per reaction step; (ii) by enhancing the stabilizing orbital interactions that result from the ability of the singly occupied molecular orbital of the radical‐cation dienophile to engage in an additional three‐electron bonding interaction with the highest occupied molecular orbital of the diene.