Premium
General Synthesis of Sulfonate‐Based Metal–Organic Framework Derived Composite of M x S y @N/S‐Doped Carbon for High‐Performance Lithium/Sodium Ion Batteries
Author(s) -
Chen Lin,
Han Lijing,
Liu Xingjiang,
Li Yafeng,
Wei Mingdeng
Publication year - 2021
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.202004241
Subject(s) - lithium (medication) , composite number , anode , materials science , pyrolysis , nanoparticle , sodium ion battery , carbon fibers , sulfide , inorganic chemistry , metal , sodium , battery (electricity) , metal organic framework , doping , sulfonate , chemistry , electrode , nanotechnology , organic chemistry , composite material , metallurgy , adsorption , power (physics) , faraday efficiency , endocrinology , quantum mechanics , medicine , physics , optoelectronics
A general and simple strategy is realized for the first time for the preparation of metal sulfide (M x S y ) nanoparticles immobilized into N/S co‐doped carbon (NSC) through a one‐step pyrolysis method. The organic ligand 1,5‐naphthalenedisulfonic acid in the metal–organic framework (MOF) precursor is used as a sulfur source, and metal ions are sulfurized in situ to form M x S y nanoparticles, resulting in the formation of M x S y /NSC (M=Fe, Co, Cu, Ni, Mn, Zn) composites. Benefiting from the M x S y nanoparticles and conductive carbon, a synergistic effect of the composite is achieved. For instance, the composite of Fe 7 S 8 /NSC as an anode displays excellent long‐term cycling stability in lithium/sodium ion batteries. At 5 A g −1 , large capacities of 645 mA h g −1 and 426.6 mA h g −1 can be retained after 1500 cycles for the lithium‐ion battery and after 1000 cycles for the sodium‐ion battery, respectively.