z-logo
Premium
General Synthesis of Sulfonate‐Based Metal–Organic Framework Derived Composite of M x S y @N/S‐Doped Carbon for High‐Performance Lithium/Sodium Ion Batteries
Author(s) -
Chen Lin,
Han Lijing,
Liu Xingjiang,
Li Yafeng,
Wei Mingdeng
Publication year - 2021
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.202004241
Subject(s) - lithium (medication) , composite number , anode , materials science , pyrolysis , nanoparticle , sodium ion battery , carbon fibers , sulfide , inorganic chemistry , metal , sodium , battery (electricity) , metal organic framework , doping , sulfonate , chemistry , electrode , nanotechnology , organic chemistry , composite material , metallurgy , adsorption , power (physics) , faraday efficiency , endocrinology , quantum mechanics , medicine , physics , optoelectronics
A general and simple strategy is realized for the first time for the preparation of metal sulfide (M x S y ) nanoparticles immobilized into N/S co‐doped carbon (NSC) through a one‐step pyrolysis method. The organic ligand 1,5‐naphthalenedisulfonic acid in the metal–organic framework (MOF) precursor is used as a sulfur source, and metal ions are sulfurized in situ to form M x S y nanoparticles, resulting in the formation of M x S y /NSC (M=Fe, Co, Cu, Ni, Mn, Zn) composites. Benefiting from the M x S y nanoparticles and conductive carbon, a synergistic effect of the composite is achieved. For instance, the composite of Fe 7 S 8 /NSC as an anode displays excellent long‐term cycling stability in lithium/sodium ion batteries. At 5 A g −1 , large capacities of 645 mA h g −1 and 426.6 mA h g −1 can be retained after 1500 cycles for the lithium‐ion battery and after 1000 cycles for the sodium‐ion battery, respectively.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here