z-logo
Premium
N‐Heterocyclic Carbene Organocatalysis: With or Without Carbenes?
Author(s) -
Gehrke Sascha,
Hollóczki Oldamur
Publication year - 2020
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.202002656
Subject(s) - carbene , chemistry , umpolung , organocatalysis , lone pair , concerted reaction , reaction mechanism , transition metal carbene complex , transition state , catalysis , stereochemistry , combinatorial chemistry , molecule , organic chemistry , enantioselective synthesis , nucleophile
Abstract In this work the mechanism of the aldehyde umpolung reactions, catalyzed by azolium cations in the presence of bases, was studied through computational methods. Next to the mechanism established by Breslow in the 1950s that takes effect through the formation of a free carbene, we have suggested that these processes can follow a concerted asynchronous path, in which the azolium cation directly reacts with the substrate, avoiding the formation of the carbene intermediate. We hereby show that substituting the azolium cation, and varying the base or the substrate do not affect the preference for the concerted reaction mechanism. The concerted path was found to exhibit low barriers also for the reactions of thiamine with model substrates, showing that this path might have biological relevance. The dominance of the concerted mechanism can be explained through the specific structure of the key transition state, avoiding the liberation of the highly reactive, and thus unstable carbene lone pair, whereas activating the substrate through hydrogen‐bonding interactions. Polar and hydrogen‐bonding solvents, as well as the presence of the counterions of the azolium salts facilitate the reaction through carbenes, bringing the barriers of the two reaction mechanisms closer, in many cases making the concerted path less favorable. Thus, our data show that by choosing the exact components in a reaction, the mechanism can be switched to occur with or without carbenes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here