Premium
Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl‐, Hydroxymethyl‐ and Iodo‐substituents
Author(s) -
Dallaston Madeleine A.,
Houston Sevan D.,
Williams Craig M.
Publication year - 2020
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.202001658
Subject(s) - cubane , bicyclic molecule , pentane , hydroxymethyl , octane , thermal decomposition , chemistry , stereochemistry , molecule , organic chemistry
Abstract With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4‐cubane‐dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo‐substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds—a computational indicator of sensitivity.