z-logo
Premium
Facile Access to Substituted 1,4‐Diaza‐2,3‐Diborinines
Author(s) -
Thiess Torsten,
Ernst Moritz,
Kupfer Thomas,
Braunschweig Holger
Publication year - 2020
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201905356
Subject(s) - diborane , chemistry , steric effects , boron , halide , salt (chemistry) , ring (chemistry) , stereochemistry , medicinal chemistry , crystallography , combinatorial chemistry , organic chemistry
Several bis(dimethylamino)‐substituted 1,4‐diaza‐2,3‐diborinines (DADBs) were synthesized with variable substituents at the backbone nitrogen atoms. By reaction with HCl or BX 3 (X=Br, I), these species were successfully converted into their synthetically more useful halide congeners. The high versatility of the generated B−X bonds in further functionalization reactions at the boron centers was demonstrated by means of salt elimination (MeLi) and commutation (NMe 2 DADBs) reactions, thus making the DADB system a general structural motif in diborane(4) chemistry. A total of 18 DADB derivatives were characterized in the solid state by X‐ray diffraction, revealing a strong dependence of the heterocyclic bonding parameters from the exocyclic substitution pattern at boron. According to our experiments towards the realization of a Dipp‐substituted, sterically encumbered DADB, the mechanism of DADB formation proceeds via a transient four‐membered azadiboretidine intermediate that subsequently undergoes ring expansion to afford the six‐membered DADB heterocycle.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here