Premium
A Quadrupolar Bis‐Triarylborane Chromophore as a Fluorimetric and Chirooptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins
Author(s) -
Ban Željka,
Griesbeck Stefanie,
Tomić Sanja,
Nitsch Jörn,
Marder Todd B.,
Piantanida Ivo
Publication year - 2020
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201903936
Subject(s) - chromophore , dna , rna , fluorescence , chemistry , biophysics , photochemistry , biochemistry , biology , physics , gene , optics
A water‐soluble tetracationic quadrupolar bis‐triarylborane chromophore showed strong binding to ds‐DNA, ds‐RNA, ss‐RNA, as well as to the naturally most abundant protein, BSA. The novel dye can distinguish between DNA/RNA and BSA by fluorescence emission separated by Δ ν ˜ =3600 cm −1 , allowing for the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein‐like target as a dominant binding site of 1 in cells. Moreover, our dye also bound strongly to ss‐RNA, with the unusual rod‐like structure of the dye, decorated by four positive charges at its termini and having a hydrophobic core, acting as a spindle for wrapping A, C and U ss‐RNAs, but not poly G, the latter preserving its secondary structure. To the best of our knowledge, such unmatched, multifaceted binding activity of a small molecule toward DNA, RNA, and proteins and the selectivity of its fluorimetric and chirooptic response makes the quadrupolar bis‐triarylborane a novel chromophore/fluorophore moiety for biochemical applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom