z-logo
Premium
Self‐Supported ZIF‐Derived Co 3 O 4 Nanoparticles‐Decorated Porous N‐Doped Carbon Fibers as Oxygen Reduction Catalyst
Author(s) -
Song Li,
Tang Jing,
Wang Tao,
Wu Chao,
Ide Yusuke,
He Jianping,
Yamauchi Yusuke
Publication year - 2019
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201900197
Subject(s) - catalysis , materials science , aqueous solution , nanoparticle , electrocatalyst , electrochemistry , chemical engineering , electrolyte , oxygen , electrospinning , carbon fibers , inorganic chemistry , chemistry , nanotechnology , electrode , composite material , organic chemistry , composite number , polymer , engineering
Oxygen reduction is a significant cathodic reaction in the state‐of‐art clean energy devices such as fuel cell and metal–oxygen battery. Here, ZIF‐incorporated hybrid polymeric fibres have been fabricated by using a dual‐phase electrospinning method. These are then transformed into Co 3 O 4 ‐nanoparticle‐decorated porous N‐doped carbon fibres (ZIF‐Co 3 O 4 /NCF) through multi‐step annealing treatment. The resultant ZIF‐Co 3 O 4 /NCF is interweaved into a self‐supported film and can be used as a bi‐functional catalyst for catalysing oxygen reduction in both aqueous and non‐aqueous electrolytes. Electrochemical tests demonstrate that ZIF‐Co 3 O 4 /NCF displays a high catalytic activity for oxygen reduction with a half‐wave potential ( E 1/2 ) of 0.813 V (vs. RHE) and an almost favourable four‐electron reduction pathway in alkaline medium. ZIF‐Co 3 O 4 /NCF catalyst only shows 4 mV negative shift of E 1/2 after 5000 continuous CV cycles. In addition, the ZIF‐Co 3 O 4 /NCF can be applied as the cathode catalyst of non‐aqueous Li–O 2 battery, exhibiting a remarkable ORR activity in LiPF 6 contained 1,2‐dimethoxyethane electrolyte. The excellent electrocatalytic performance of ZIF‐Co 3 O 4 /NCF is probably due to the abundance of active sites of graphitic carbon‐wrapped Co 3 O 4 nanoparticles, as well as the cross‐linked fibrous nitrogen‐doped carbon texture.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom