z-logo
Premium
Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation
Author(s) -
Ma Jianlong,
Yan Chaoxian,
Li Yijing,
Duo Huixiao,
Li Qiang,
Lu Xiaofeng,
Guo Yong
Publication year - 2019
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201806264
Subject(s) - hypochlorous acid , chemistry , chlorine , fluorescence , photochemistry , oxygen , detection limit , organic chemistry , chromatography , physics , quantum mechanics
One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 n m ), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1 H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom