Premium
Aqueous Flow Batteries: Research and Development
Author(s) -
Liu Wanqiu,
Lu Wenjing,
Zhang Huamin,
Li Xianfeng
Publication year - 2019
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201802798
Subject(s) - computer science , renewable energy , aqueous solution , biochemical engineering , process engineering , energy density , risk analysis (engineering) , systems engineering , nanotechnology , environmental science , materials science , engineering , chemistry , business , electrical engineering , engineering physics
Flow batteries (FBs) have become a central topic recently, due to their promising prospect of addressing the issues of the random and intermittent nature of renewable energy sources. However, the successful industrialization of current FB systems is still limited by their relatively low energy densities and high cost. Research and development into novel aqueous FB systems with high energy density, high safety, and low cost are accordingly urgently required. Some novel aqueous FB systems have been explored in recent years to overcome issues of traditional FBs and vanadium FBs, in particular. Further modifications have also been made to improve their performance. In this review, appealing novel aqueous FB systems, such as zinc‐ and quinone‐based FB systems, are reviewed, in terms of the operating principles, advantages, drawbacks, corresponding performance, and subsequent modifications. Moreover, recent investigations and advancements, and prospective research directions for novel aqueous FB systems, are summarized. Therefore, this review will provide guidance and perspectives for developing new aqueous FB systems.