Premium
Correlation between Ionic Liquid Cytotoxicity and Liposome–Ionic Liquid Interactions
Author(s) -
Ruokonen SuviKatriina,
Sanwald Corinna,
Robciuc Alexandra,
Hietala Sami,
Rantamäki Antti H.,
Witos Joanna,
King Alistair W. T.,
Lämmerhofer Michael,
Wiedmer Susanne K.
Publication year - 2018
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201704924
Subject(s) - liposome , cytotoxicity , ionic liquid , penetration (warfare) , chemistry , biophysics , bilayer , lipid bilayer , hemolysis , micelle , zeta potential , differential scanning calorimetry , toxicity , chromatography , membrane , organic chemistry , biochemistry , in vitro , nanotechnology , materials science , nanoparticle , biology , aqueous solution , thermodynamics , physics , operations research , immunology , engineering , catalysis
This study aims at extending the understanding of the toxicity mechanism of ionic liquids (ILs) using various analytical methods and cytotoxicity assays. The cytotoxicity of eight ILs and one zwitterionic compound was determined using mammalian and bacterial cells. The time dependency of the IL toxicity was assessed using human corneal epithelial cells. Hemolysis was performed using human red blood cells and the results were compared with destabilization data of synthetic liposomes upon addition of ILs. The effect of the ILs on the size and zeta potential of liposomes revealed information on changes in the lipid bilayer. Differential scanning calorimetry was used to study the penetration of the ILs into the lipid bilayer. Pulsed field gradient nuclear magnetic resonance spectroscopy was used to determine whether the ILs occurred as unimers, micelles, or if they were bound to liposomes. The results show that the investigated ILs can be divided into three groups based on the cytotoxicity mechanism: cell wall disrupting ILs, ILs exerting toxicity through both cell wall penetration and metabolic alteration, and ILs affecting solely on cell metabolism.