Premium
pH‐Responsive Porous Nanocapsules for Controlled Release
Author(s) -
Song Jun,
Wei Yanlong,
Hu Jiwen,
Liu Guojun,
Huang Zhengzhu,
Lin Shudong,
Liu Feng,
Mo Yangmiao,
Tu Yuanyuan,
Ou Ming
Publication year - 2018
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201704328
Subject(s) - nanocapsules , porosity , chemical engineering , controlled release , materials science , nanotechnology , chemistry , composite material , nanoparticle , engineering
In this work pH‐responsive porous nanocapsules have been successfully prepared from a ternary graft copolymer, poly(glycidyl methacrylate)‐ g ‐[poly(2‐cinnamoyloxyethyl methacrylate)‐ r ‐poly(ethylene glycol) methyl ether‐ r ‐poly(2‐diethylaminoethyl methacrylate)] or PGMA‐ g ‐(PCEMA‐ r ‐MPEG‐ r ‐PDEAEMA). The graft copolymers were fabricated by grafting three types of polymer chains onto the backbone polymer by using click chemistry. These ternary copolymers underwent self‐assembly to form vesicles in a DMF/water solvent mixture. While the MPEG chains served as the corona and stabilized the vesicles, the vesicle wall was composed of a dominant PCEMA continuous phase that was interspersed by PDEAEMA domains. After photo‐cross‐linking, the PDEAEMA domains were embedded in the structurally locked PCEMA wall. By decreasing the pH of the external solution, we were able to trigger the release of encapsulated pyrene due to the capsule wall becoming porous as a result of the PDEAEMA chains bearing positively charged amine groups stretching into the water. While these pH‐responsive porous nanocapsules exhibited potential applications in drug delivery, detection and catalysis, the strategy reported in this contribution also represented a new paradigm for the design and preparation of other novel stimuli‐responsive porous nanocapsules.