Premium
Microscopic Insights on the Multiferroic Perovskite‐Like [CH 3 NH 3 ][Co(COOH) 3 ] Compound
Author(s) -
Mazzuca Lidia,
CañadillasDelgado Laura,
Fabelo Oscar,
RodríguezVelamazán J. Alberto,
Luzón Javier,
Vallcorba Oriol,
Simonet Virginie,
Colin Claire V.,
RodríguezCarvajal Juan
Publication year - 2018
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201703140
Subject(s) - neutron diffraction , materials science , antiferromagnetism , perovskite (structure) , multiferroics , magnetization , phase transition , crystallography , ferromagnetism , counterion , condensed matter physics , ferroelectricity , dielectric , crystal structure , space group , phase (matter) , magnetic structure , anisotropy , ion , diffraction , x ray crystallography , chemistry , magnetic field , physics , optics , organic chemistry , optoelectronics , quantum mechanics
The characterization of the crystal structure, phase transitions, magnetic structure and dielectric properties has been carried out on [CH 3 NH 3 ][Co(COOH) 3 ] ( 1 ) perovskite‐like metal–organic compound through variable‐temperature single‐crystal and powder neutron and X‐ray diffraction and relative permittivity measurements. The paraelectric to antiferroelectric‐like phase transition observed at around 90 K is triggered by a structural phase transition; the structural studies show a change from Pnma space group at RT ( 1A ) to P 2 1 / n space group at low temperature ( 1B ). This phase transition involves the occurrence of small distortions in the framework and counterions. Neutron diffraction studies have shown a magnetic order showing spontaneous magnetization below 15 K, due to the occurrence of a non‐collinear antiferromagnetic structure with a weak ferromagnetic component, mainly due to the single‐ion anisotropy of the Co II ions.