Premium
Field‐Induced Slow Magnetic Relaxation of Gd III Complex with a Pt−Gd Heterometallic Bond
Author(s) -
Yoshida Takefumi,
Cosquer Goulven,
Izuogu David Chukwuma,
Ohtsu Hiroyoshi,
Kawano Masaki,
Lan Yanhua,
Wernsdorfer Wolfgang,
Nojiri Hiroyuki,
Breedlove Brian K.,
Yamashita Masahiro
Publication year - 2017
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201700886
Subject(s) - crystallography , chemistry , magnetic relaxation , anisotropy , relaxation (psychology) , magnetic anisotropy , ion , magnetic field , crystal (programming language) , bond length , single crystal , nuclear magnetic resonance , crystal structure , magnetization , physics , psychology , social psychology , organic chemistry , quantum mechanics , computer science , programming language
Heterometallic Gd−Pt complexes ([Gd 2 Pt 3 (H 2 O) 2 (SAc) 12 ] (SAc=thioacetate), [Y 1.4 Gd 0.6 Pt 3 (H 2 O) 2 (SAc) 12 ], and [Gd 2 Pt 3 (H 2 O) 6 (SAc) 12 ]⋅7 H 2 O have been synthesized. The crystal structures and DFT calculations indicated a Gd−Pt heretometallic bond. Single‐crystal ESR spectra determined the direction of magnetic anisotropy as direction of the Gd−Pt bond. In other words, the Gd−Pt bond dictates the direction of magnetic anisotropy. The heterometallic Gd−Pt bond lowers the symmetry of the Gd ion, splitting the Kramers doublet in a dc field. Thus, we observed clear field‐induced slow magnetic relaxation of [Y 1.4 Gd 0.6 Pt 3 (H 2 O) 2 (SAc) 12 ] up to 36 K. The relaxation process was determined to be a direct process.