Premium
Structure‐Enabled Discovery of a Stapled Peptide Inhibitor to Target the Oncogenic Transcriptional Repressor TLE1
Author(s) -
McGrath Sally,
Tortorici Marcello,
Drouin Ludovic,
Solanki Savade,
Vidler Lewis,
Westwood Isaac,
Gimeson Peter,
Van Montfort Rob,
Hoelder Swen
Publication year - 2017
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201700747
Subject(s) - isothermal titration calorimetry , peptide , repressor , chemistry , linker , small molecule , lac repressor , biochemistry , computational biology , transcription factor , microbiology and biotechnology , biology , gene , computer science , operating system
TLE1 is an oncogenic transcriptional co‐repressor that exerts its repressive effects through binding of transcription factors. Inhibition of this protein–protein interaction represents a putative cancer target, but no small‐molecule inhibitors have been published for this challenging interface. Herein, the structure‐enabled design and synthesis of a constrained peptide inhibitor of TLE1 is reported. The design features the introduction of a four‐carbon‐atom linker into the peptide epitope found in many TLE1 binding partners. A concise synthetic route to a proof‐of‐concept peptide, cycFWRPW, has been developed. Biophysical testing by isothermal titration calorimetry and thermal shift assays showed that, although the constrained peptide bound potently, it had an approximately five‐fold higher K d than that of the unconstrained peptide. The co‐crystal structure suggested that the reduced affinity was likely to be due to a small shift of one side chain, relative to the otherwise well‐conserved conformation of the acyclic peptide. This work describes a constrained peptide inhibitor that may serve as the basis for improved inhibitors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom