z-logo
Premium
Cooperative Catalysis for Selective Alcohol Oxidation with Molecular Oxygen
Author(s) -
Slot Thierry K.,
Eisenberg David,
van Noordenne Dylan,
Jungbacker Peter,
Rothenberg Gadi
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201602964
Subject(s) - catalysis , chemistry , oxide , alcohol oxidation , oxygen , cobalt oxide , inorganic chemistry , metal , yield (engineering) , carbon fibers , cobalt , alcohol , selectivity , organic chemistry , materials science , composite number , metallurgy , composite material
The activation of dioxygen for selective oxidation of organic molecules is a major catalytic challenge. Inspired by the activity of nitrogen‐doped carbons in electrocatalytic oxygen reduction, we combined such a carbon with metal‐oxide catalysts to yield cooperative catalysts. These simple materials boost the catalytic oxidation of several alcohols, using molecular oxygen at atmospheric pressure and low temperature (80 °C). Cobalt and copper oxide demonstrate the highest activities. The high activity and selectivity of these catalysts arises from the cooperative action of their components, as proven by various control experiments and spectroscopic techniques. We propose that the reaction should not be viewed as occurring at an ‘active site’, but rather at an ‘active doughnut’–the volume surrounding the base of a carbon‐supported metal‐oxide particle.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here