Premium
Tuning One‐Dimensional Nanostructures of Bola‐Like Peptide Amphiphiles by Varying the Hydrophilic Amino Acids
Author(s) -
Zhao Yurong,
Deng Li,
Yang Wei,
Wang Dong,
Pambou Elias,
Lu Zhiming,
Li Zongyi,
Wang Jiqian,
King Stephen,
Rogers Sarah,
Xu Hai,
Lu Jian R.
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201601309
Subject(s) - peptide , amphiphile , nanostructure , amino acid , chemistry , nanotechnology , materials science , biochemistry , copolymer , organic chemistry , polymer
Abstract By combining experimental measurements and computer simulations, we here show that for the bola‐like peptide amphiphiles XI 4 X, where X=K, R, and H, the hydrophilic amino acid substitutions have little effect on the β‐sheet hydrogen‐bonding between peptide backbones. Whereas all of the peptides self‐assemble into one dimensional (1D) nanostructures with completely different morphologies, that is, nanotubes and helical nanoribbons for KI 4 K, flat and multilayered nanoribbons for HI 4 H, and twisted and bilayered nanoribbons for RI 4 R. These different 1D morphologies can be explained by the distinct stacking degrees and modes of the three peptide β‐sheets along the x ‐direction (width) and the z ‐direction (height), which microscopically originate from the hydrogen‐bonding ability of the sheets to solvent molecules and the pairing of hydrophilic amino acid side chains between β‐sheet monolayers through stacking interactions and hydrogen bonding. These different 1D nanostructures have distinct surface chemistry and functions, with great potential in various applications exploiting the respective properties of these hydrophilic amino acids.